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The aim of this paper is to model degradation phenomena in a multi-unit con-
text, with dependence between components induced by a common and external
stressing random environment. The stress arrives by shocks and each shock
induces a sudden increase to the deterioration level of each component. The
model induces a two-step dependence between components: firstly, all compo-
nents are simultaneously impacted by a shock; secondly, for a given shock, the
deterioration increments of the different components are correlated. This leads
to a multivariate degradation model. A method of moments is proposed, for
the estimation of the model parameters. Assuming the components to belong
to a system with a given failure zone, the system reliability is next provided
and the influence of the model parameters on the system lifetime is studied.
Numerical experiments illustrate the study.
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1. Introduction

The aim of this paper is to model multivariate degradation phenomena in
a multi-unit context, which takes into account some stochastic dependence
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between units. This kind of model is not so widely studied in the frame-
work of reliability theory since the associated mathematical developments
lead to cumbersome numerical computations, see however [1], [2], [5], [7]
for a few exceptions. In the present work, the dependence between compo-
nents is induced by a common and external stressing random environment
which arrives by shocks. These shocks may be due to some external spe-
cific demand, some significative change of the operational condition, of the
environments, etc... Each shock induces a sudden increase to the deterio-
ration levels of the components. The model induces a two-step dependence
between components: firstly, all components are simultaneously impacted
by a shock; secondly, for a given shock, the deterioration increments of the
different components can be correlated. Out of shocks, the components
behave independently. From a practical point of view, we have a multivari-
ate degradation phenomena whose speed is not changed by the shocks, but
whose level can be significantly increased at each shock event.
The intrinsic deterioration of the units is modeled through independent

stochastic processes, which are classically assumed to be Gamma processes
[8]. The shocks arrive independently, according to a Poisson process. Sud-
den change in the deterioration level of a component at shocks times will
be seen to be just equivalent to some sudden change in its age, leading to
some kind of virtual age model [4]. Also, the choice of an adequate distrib-
ution for the increments of deterioration/age at shocks times may give rise
to possibly fatal shocks, leading to some shock model with mixed effect.
The paper is organized as follows: in Section 2, the model is presented

and the Laplace transform of the multivariate degradation process is given.
In Section 3, an estimation scheme based on a method of moments is pro-
posed. Assuming the components to be the constitutive part of a system
with a given failure zone, the system reliability is next provided in Section 4
and the influence of the model parameters on the system lifetime is studied.
Conclusive remarks end the paper in Section 5.

2. Degradation modeling

Let Zt =
(
Z

(1)
t , · · · , Z(n)

t

)
t≥0
, where

(
Z

(i)
t

)
t≥0

are independent and iden-

tically distributed (i.i.d.) univariate Gamma processes. With no loss of
generality, the random variable Z(i)

t is supposed to be gamma distrib-
uted with shape t and scale 1 (denoted by Γ (t, 1)), for all t ≥ 0 and
all i ∈ {1, · · · , n}. The intrinsic deterioration of component i is mod-



3

elled by
(
Z

(i)
ait

)
t≥0
, where Z(i)

ait is gamma distributed Γ (ait, 1). Setting

a = (a1, · · · , an), the multivariate intrinsic deterioration at time t can be

restated as Zta =
(
Z

(1)
a1t, · · · , Z

(n)
a2t

)
.

The shocks are assumed to arrive according to a homogeneous Poisson
process N = (Nt)t≥0 with rate λ > 0, independent of Z = (Zt)t≥0.
We next introduce i.i.d. non negative random vectors U1, ..., Uj , ...

independent of N and of Z, with Uj =
(
U

(1)
j , · · · , U (n)

j

)
, all j ∈ N∗. When

unnecessary, we drop subscript j, and we set U =
(
U (1), · · · , U (n)

)
to be a

generic copy of Uj . Setting

Y
(i)
t =

Nt∑
j=1

U
(i)
j , for all t ≥ 0 and all 1 ≤ i ≤ n,

the random variable Y (i)
t /ai stands for the cumulated increment of age of

component i on [0, t]. This means that the deterioration level of compo-
nent i at calendar time t is the same as if its age were t + Y

(i)
t /ai, which

hence appears as its virtual age. The corresponding deterioration level is
Z

(i)

ai
(
t+Y

(i)
t /ai

) = Z
(i)

ait+Y
(i)
t

.

In the multivariate framework, we now set:

Yt =

Nt∑
j=1

Uj =
(
Y

(1)
t , · · · , Y (n)

t

)
,

Xt = Zta+Yt =

(
Z

(1)

a1t+Y
(1)
t

, · · · , Z(n)

ant+Y
(n)
t

)
. (1)

It is easy to check that Xt is identically distributed
(
· · · D= · · ·

)
as

the sum of two independent random vectors: Xt
D
= X⊥t + X

‖
t , where

X⊥t
D
= Zta corresponds to the intrinsic deterioration and X

‖
t
D
= ZYt

to the
deterioration due to the shocks. The whole dependence between the com-
ponents of X is included in the dependence between the components of

X‖. Besides, introducing Vj
D
= ZUj

, j ∈ N∗ as i.i.d. random vectors
independent of N , we have

X
‖
t
D
= Z∑Nt

j=1Uj

D
=

Nt∑
j=1

Vj =

Nt∑
j=1

(
V

(1)
j , · · · , V (n)

j

)
,

where V (i)
j is conditionnaly gamma distributed Γ

(
U

(i)
j , 1

)
given U (i)

j , for

all j ∈ N∗ and all 1 ≤ i ≤ n. The process X‖ can hence be seen as
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a multivariate compound Poisson process. With this interpretation, Vj

stands for the multivariate increment of deterioration at the j-th shock
event.
Note that no assumption is put on the distribution of the Uj’s. Taking

Uj as the result of a Bernoulli trial between an immediate failure state
for all (or only a few) components and an absolutely continuous random
vector, then the model can be seen as a shock model with mixed effect, in
the sense that a single shock can either entail the simultaneous failures of
all (or only a few) components, or can either increase their deterioration.
Finally, remembering that a gamma process is a Lévy process, we can

notice that Z is the conjonction of n independent Lévy processes, and hence,
Z is a multivariate Lévy process. Also, Y is a non negative multivariate
compound Poisson process and consequently, it is a non decreasing Lévy
process, also called multivariate subordinator. Based on (1), the process
X is obtained through multivariate subordination of the Lévy process Z
and hence, X is a (multivariate) Lévy process. As a consequence, the full
distribution of X is entirely characterized by the (multivariate) Laplace
transform of Xt, which we next provide.

Proposition 2.1. For s = (s1, · · · , sn) ∈ Rn+, we have

LXt
(s) = E

(
e−
∑n

i=1 siX
(i)
t

)
= e−λt (1−LU1

(ln(1+s)))
n∏
i=1

(1 + si)
−ait

where ln (1 + s) = (ln (1 + s1) , · · · , ln (1 + sn)) and

LU1
(ln (1 + s)) = E

(
n∏
i=1

(1 + si)
−U(i)

1

)
.

Based on this full form expression for the Laplace transform of Xt, one
can show that the process is theoretically identifiable.

3. Estimation

We here derive various moments of Xt from its Laplace transform.

Proposition 3.1. For all 1 ≤ i, j ≤ n with i 6= j and all t ≥ 0, we have:

E
(
X

(i)
t

)
= t m(i) with m(i) = ai + λ E

(
U (i)

)
,

var
(
X

(i)
t

)
= t µ

(i)
2 with µ(i)

2 = m(i) + λ E
(
U (i)2

)
,

cov
(
X

(i)
t , X

(j)
t

)
= t ci,j with ci,j = λ E

(
U (i)U (j)

)
,
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E
((

X
(i)
t − t m(i)

)3
)

= t µ
(i)
3 with µ(i)

3 = 2ai+λ E
(
U (i)

(
U (i) + 1

)(
U (i) + 2

))
.

In case of a parametric model, these full form expressions allow to de-
velopp estimation methods based on moments. When observations are
periodic, unbiaised estimators of m(i), µ(i)

2 and ci,j are used, as provided
in [3] or [6]. In the case where an additional equation is required, a similar
unbiaised estimator of the third-order moment µ(j)

3 is developped. (Higher
moments can also be used, if necessary).

Example 3.1. Starting from three independant and exponentially distrib-
uted random variables V (i), i = 1, 2, 3 with respective mean 1/λi, i = 1, 2, 3,
we set U (1) = V (1) +V (3), U (2) = V (2) +V (3). The first line of the following
table provides the value of the parameters, the second and third lines pro-
vide the mean and the standard deviation of 500 estimation results based
on 500 simulations of 1000 paths observed at times 1, 2, 3, ..., 100, respec-
tively, and the last line gives the associated 95% confidence intervals (CI),
based on empirical quantiles.

a1 a2 λ λ1 λ2 λ3

param. 1 2 5 2 1 3

mean 0.97749 1.9687 5.0558 2.0102 1.0057 3.0189

std 0.12285 0.16467 0.27253 0.058268 0.028479 0.1352

95% CI [0.967,0.988] [1.954,1.983] [5.032,5.080] [2.005,2.015] [1.003,1.008] [3.007,3.031]

4. Reliability assessment and impact of the parameters on
the reliability

The n components are now assumed to be the constitutive parts of a system
and we set D ⊂ Rn+ be the set of the down states for the system. A
common assumption is that, without repair, a down system cannot recover.
This writes: Xt ∈ D implies Xt+s ∈ D, for all s, t ≥ 0. As Xt ≤ Xt+s

(componentwise), a natural assumption on D is that: if x ≤ y and x ∈ D,
then y ∈ D, or equivalently, that the failure area D must be an upper set.
In the two-dimensional case, an example of such an upper set is

D =
{
x = (x1, x2) ∈ R2

+ : x1 + x2 ≥ L
}
, (2)

see e.g. [7]. If the system is coherent with structure function Φ and if each
component i has its own failure threshold Li (independent of the failure
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thresholds of the other components), then

D =
{
x ∈ Rn+ : Φ (I (x)) = 0

}
,

where I (x) =
(
1[0,Li[ (xi)

)
1≤i≤n ∈ {0, 1}

n.

Proposition 4.1. The reliability of the system at time t is:

R (t) = P (Xt /∈ D) = E

[∫
R+\D

(
n∏
i=1

f
(Γ)

ai
(
t+Y

(i)
t

) (zi)

)
dz

]
, (3)

where f (Γ)
θ is the Gamma probability distribution function with shape θ and

scale 1.

Apart from particular cases, the distribution of the multivariate com-

pound Poisson process Yt =
(
Y

(1)
t , · · · , Y (n)

t

)
is not tractable analytically.

The previous formula cannot hence be made more explicite. It can be nu-
merically assessed through Monte-Carlo simulations of Yt (which are much
simpler than direct Monte-Carlo simulations of Xt).

We now provide results showing the influence of the model parameters
on the system lifetime, or on its reliability, equivalently. With that aim, two
systems S and S̃ are considered with identical failure zones and identical
parameters, except from one. We add ˜ to every quantity refering to S̃.

Proposition 4.2. Assume that λ ≤ λ̃. Then, R (t) ≥ R̃ (t) for any t ≥ 0.

This proposition means that the lifetime of the system stochastically
decreases when the shock frequency increases.

Proposition 4.3. Assume that each component has its own failure thresh-
old and that the system is coherent. With the previous notations:

(1) In case of a series system, if FU ≤ FŨ, then R (t) ≤ R̃ (t) ,

(2) In case of a parallel system, if F̄U ≤ F̄Ũ, then R (t) ≥ R̃ (t) , all
t ≥ 0.

In case U and Ũ are identically marginaly distributed, each condition
FU ≤ FŨ and F̄U ≤ F̄Ũ means that the dependence between the margins
of Ũ is stronger than between the margins of U. In that case and if both
conditions FU ≤ FŨ and F̄U ≤ F̄Ũ are fullfilled, the reliability increases
with the dependence for a series system and decreases with the dependence
for a parallel system.
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C1

C3

C2

Figure 1. Structure of the three-unit system.

We now illustrate the previous results on a three unit coherent system,
according to the structure depicted in Figure 1. Each unit has its own
specific failure threshold Li. This provides

D =
(
[L1,∞[×R2

+

)
∪ {R+ × [L2,∞[×[L3,∞[}

and, based on (3), we get:

R (t) = E
[
F

(Γ)

a1t+Y
(1)
t

(L1)

(
1− F̄ (Γ)

a2t+Y
(2)
t

(L2) F̄
(Γ)

a3t+Y
(3)
t

(L3)

)]
,

where F (Γ)
θ

(
F̄

(Γ)
θ

)
is the Gamma cumulative distribution (survival) func-

tion with shape θ and scale 1.
We take ai = 0 and each U (i) is exponentially distributed with mean

1 for all i ∈ {1, 2, 3}. We consider two cases: In the first case U (1) is
independent of

(
U (2), U (3)

)
. The dependence between U (2) and U (3) is

modelled through a Marshall-Olkin distribution, with

F̄(U(2),U(3)) (u2, u3) = e−(1−λ12)u2−(1−λ12)u3−λ12 max(u2,u3). (4)

This provides exponential marginal distributions with mean 1 for any λ12 ∈
[0, 1]. Also, all the dependence is measured by λ12 and both FU and F̄U
increases when λ12 increases. We also take (L1, L2, L3) = (500, 100, 100).
In the second case, U (2) is independent of

(
U (1), U (3)

)
and

(
U (1), U (3)

)
is

Marshall-Olkin distributed (4). Also, (L1, L2, L3) = (100, 20, 100). The
reliability R (t) at time t = 10 is plotted with respect of the dependence
(measured by λ12) for both cases in Figure 2. The left plot stands for the
first case, where component 1 is highly more reliable than the other two
ones. The system hence roughly behaves like a parallel system and R (t)

decreases when the dependence increases. The right plot stands for the
second case, where component 2 is highly less reliable than the other two
ones. The system roughly behaves like a series system and R (t) increases
when the dependence increases. This example shows that in case of a
general structure (and hence of a general failure zone), nothing can be said
about the influence of the dependence on the reliability of the system.
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Figure 2. R (t) with respect of λ12 for t = 10

5. Conclusion

The proposed model allows to consider stochastic dependencies in a multi-
unit context with tractable calculation for the reliability. Further work
is necessary to investigate some different topics such as alternate estima-
tion procedures and the use of the above results in a maintenance context.
Also, more precise applications with suitable form of dependencies would
be welcomed, to enhance the interest of the proposed model.
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